
Debugging Episode
What about the SSDN?

Sat, Mar 23, 2002

A PowerPC/vxWorks front end node that had run successfully for 30 days suddenly quit
working. So it needed to be reset. Awhile later it stopped working again. The ACReq task,
which supports all Acnet protocols, had been suspended, meaning that the kernel didn’t like
something it did. We can reset these nodes from afar, using the Classic protocol, so it doesn’t
necessarily mean someone has to take a walk and physically press the reset button on the
CPU board. But it is a disruption, and it certainly looks bad from the Main Control Room.

So, what happened that day that may have contributed to the problem? A new local
application was under development. But that did not seem to be the problem, since disabling
execution of that LA didn’t stop the hang-ups. Removing the program from the system made
no difference. Could there be some persistent bug left by executing this new program?

Asking what survives a node reset, the first thing we think of is the nonvolatile memory.
Much system configuration data is maintained in nonvolatile (but eminently writable) system
tables. Each node runs the same system program, but its particular behavior and personality
rely strongly on its configuration parameters that are housed in a set of system tables. An
examination of the contents of these tables was made, but nothing appeared to be unusual;
there was no evidence that an LA had destroyed something important in the tables.

The LAs that remained in this particular front end, node062E, were the usual suite of LAs
that reside in all Linac nodes. But the code for these LAs is maintained by vxWorks as a DOS-
format memory file system. If a program was hurt slightly by a bug in the new LA, could it
still be allowed to run; does the kernel make use of checksums for verification of file
contents? We disabled each of these LAs, deleted each from the file system, downloaded new
copies from the library node0619, and re-enabled each one. We hoped that the problem was
now eliminated.

Alas, after a time, the system stopped working again. Too bad; it seems that there is no
reason to blame nonvolatile memory. But what else could it be?

When the new LA was being tested, two devices were DABBELed into the Acnet database.
We wondered whether something might be wrong there. But since that act of entering
devices into the database merely causes changes to entries in the nonvolatile ADESC (analog
descriptor) table, these had already been looked at, and nothing seemed at all strange in the
fields of the affected entries. The dates-of-last-change were checked for all ADESC entries, and
only those two channels showed recent modification. Just in case some other entry was hurt
by an errant memory write, which would not alter the date-of-last-change, a listing of all such
fields was examined, and again, nothing seemed untoward.

Since the two devices were DABBELed, we checked what had been downloaded to the front
end, and nothing seemed to be in error, as noted above. But what about the SSDN values
associated with each of the device properties?

The SSDN is an 8-byte structure that is stored in the Acnet database for use by Acnet data pool
software to request (or set) the property of a device from an Acnet console. The significance
of the fields in an SSDN is chosen by each front end programmer to include what is necessary
to identify what is being referenced in an Acnet data request. If it is wrong, invalid data

might be obtained from the wrong node. The SSDN values were checked. The target node
number (always in the second word of the SSDN for these front ends) was correct—0x062E.
Each SSDN looked superficially ok.

But then it was noticed that the SSDN corresponding to the analog alarm block property for
one of the two devices was in error. The node number field was ok, but the listype number
was wrong. For this property, the listype number is always 0x02. That listype references the
nominal value field in the ADATA entry for the device/channel. In that table’s entries, the
fields following the nominal value are the tolerance value, the alarm flags and alarm trip
counter. All alarm fields can be accessed by this listype, so that the Acnet 20-byte alarm block
property can be composed in response to a request. The actual (erroneous) SSDN used was

 0011 062E 0060 0002

The correct SSDN for this channel should have been

 0201 062E 0060 0000

In order to explain why an incorrect SSDN could cause difficulty for the front end, we may
have to postulate that there is a bug in the handling of an SSDN that was triggered by this
particular errant SSDN. Ideally, the software should not rely so strongly on a correct SSDN
that the health of the front end is affected when junk is used by mistake. Perhaps we are not
careful enough in screening out bogus SSDN fields.

In order to make the system more robust, since the listype number must be 0x02 for an
analog alarm block property, we could check for it, and if it does not match the expected
value, we could return an error. Examination of such errors, which are logged on the web
every day, might reveal that something needs to be re-DABBELed. (An alternative could be
to ignore the listype number given, but this approach would not help to get such database
errors corrected.) Of course, not all SSDN errors can be detected, but we need to be careful
about those that are patently erroneous.

As to what lessons can be learnt by this experience, we now must understand that invalid
Acnet database errors can have effects beyond merely downloading incorrect ADESC entry
fields. Even when the ADESC entry is ok, the SSDN must still be checked, perhaps carefully,
since the SSDN will be acted upon when an Acnet request is made. (For an alarm block, the
same SSDN is used when setting the alarm block.) From this particular experience, we need to
review the processing of an SSDN to prevent invalid values from causing system-wide
problems. A DABBEL user cannot be expected to never make a mistake, as this area of
expertise is a bit parochial. But we should try as far as possible to prevent such mistakes from
causing errors extending beyond merely returning invalid data values.

Another result from this experience might be improved diagnostics so that unusual activity
might be detected at the front-end level. This will take more thought.

Debugging Episode p. 2

